The European Commission’s science and knowledge service
Joint Research Centre

Assessing the impact of Connected and Automated Vehicles: A freeway scenario.

21th International Forum on Advanced Microsystems for Automotive Applications
25-26 September 2017

Michail Makridis, Konstantinos Mattas, Biagio Ciuffo, María Alonso Raposo and Christian Thiel
Anticipated impacts from AVs

Less congestion
Shorter travelling time
Less pollution
Less energy consumption
Less accidents
More parking space
Higher mobility (elderly, kids, etc)

So, is AV-technology that really promising?
Anticipated impacts from AVs

Improvement, probably, won’t come unconditioned for reasons such as:

- No clear relationship between penetration of AVs and potential gain (congestion, energy etc).
- Future traffic demand cannot be easily estimated
- Electrification is not interwoven with Automation
- New industry business – uncharted waters
Anticipated impacts from AVs

In this work, we study the impact of Connectivity and Automation on a freeway scenario assessing the CACC logic*.

Summarized preliminary results show:
- Less congestion does not necessarily mean less energy consumption.
- Vehicles’ coordination might needed to exploit better the potential of the technology.

Case study – Ring road of Antwerp

The idea is to run simulation experiments based on real data on a real network and study the benefits of CACC on a highway.
Ring road of Antwerp and Network

- Connects the 2nd biggest port in Europe with the continent

- Is responsible for over half of the overall pollutant emissions generated by road transport in the city

- The final supply model of the network consists of 119km of roads with 27 centroids (origin/destination points) and 117 intersections.
Ring road of Antwerp and Network

- Traffic demand based on real counts during peak hours
- Post-processing of the loaded network
Simulation scenarios

- Variable CACC penetration rates
- Variable traffic demands
- 3 hours of simulation (load – peak – unload)
Assessment metrics

- Harmonic average speed
- Standard deviation of the speed
- Average density of the network
- Average flow of the network
- Total energy consumption on wheels*

Simulation results - Speed

![Graph showing speed over time for various penetration rates](image)

- PR 0 D 0.8
- PR 0.25 D 0.8
- PR 0.5 D 0.8
- PR 0.75 D 0.8
- PR 1 D 0.8
Simulation results - Speed
Simulation results - Speed

Time - Speed for various penetration rates

Speed (m/sec)

Time (min)

PR 0 D 1.2
PR 0.25 D 1.2
PR 0.5 D 1.2
PR 0.75 D 1.2
PR 1 D 1.2
Results – Energy consumption

<table>
<thead>
<tr>
<th>CACC Penetration rate</th>
<th>Traffic Demand D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8D</td>
</tr>
<tr>
<td>PR 0</td>
<td>3468.9 kJ</td>
</tr>
<tr>
<td>PR 0.25</td>
<td>1.60%</td>
</tr>
<tr>
<td>PR 0.5</td>
<td>3.85%</td>
</tr>
<tr>
<td>PR 0.75</td>
<td>5.57%</td>
</tr>
<tr>
<td>PR 1</td>
<td>4.30%</td>
</tr>
</tbody>
</table>
Conclusions

• CACC, higher demands, higher efficiency
• Penetration rate and CACC efficiency are not linearly correlated
• Particularities of the network need consideration
• Communication with the infrastructure and coordination of AVs could help
• Human behavior (i.e. exceeding speed limit) can potentially facilitate flows
Stay in touch

EU Science Hub: ec.europa.eu/jrc
Twitter: @EU_ScienceHub
YouTube: EU Science Hub

Facebook: EU Science Hub – Joint Research Centre
LinkedIn: Joint Research Centre

or contact us directly at:
Michail.MAKRIDIS@ec.europa.eu
Konstantinos.MATTAS@ext.ec.europa.eu
Biagio.CIUFFO@ec.europa.eu
Maria.ALONSO-RAPOS@ec.europa.eu
Christian.THIEL@ec.europa.eu

JRC will host the 2nd Symposium on Management of Future Motorway and urban traffic systems

Ispra (IT), 11-12 June 2018

2017 JRC Science for Policy report - JRC106565